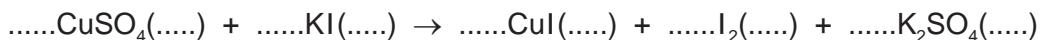


CHEMISTRY

PAPER 2 2020 — 2025


Chapter 1	ATOMS, MOLECULES & STOICHIOMETRY	Page 1
Chapter 2	ATOMIC STRUCTURE	Page 102
Chapter 3	CHEMICAL BONDING	Page 186
Chapter 4	STATES OF MATTER	Page 348
Chapter 5	CHEMICAL ENERGETICS	Page 395
Chapter 6	ELECTROCHEMISTRY	Page 529
Chapter 7	EQUILIBRIA	Page 568
Chapter 8	REACTION KINETICS	Page 659
Chapter 9	THE PERIODIC TABLE : CHEMICAL PERIODICITY	Page 697
Chapter 10	GROUP 2	Page 833
Chapter 11	GROUP 17	Page 909
Chapter 12	AN INTRODUCTION TO THE CHEMISTRY OF TRANSITION ELEMENTS	Page 969
Chapter 13	NITROGEN & SULFUR	Page 972
Chapter 14	AN INTRODUCTION TO ORGANIC CHEMISTRY	Page 1004
Chapter 15	HYDROCARBONS	Page 1117
Chapter 16	HALOGEN DERIVATIVES	Page 1201
Chapter 17	HYDROXY COMPOUNDS	Page 1257
Chapter 18	CARBONYL COMPOUNDS	Page 1305
Chapter 19	CARBOXYLIC ACIDS AND DERIVATIVES	Page 1344
Chapter 20	NITROGEN COMPOUNDS	-----
Chapter 21	POLYMERISATION	Page 1382
Chapter 22	ANALYTICAL TECHNIQUES	Page 1359
Chapter 23	ORGANIC SYNTHESIS	Page 1497

1 - (9701/21_Summer_2020_Q2)

ANSWER

(a) The equation shown in (a)(i) describes the reaction which occurs when aqueous potassium iodide is added to aqueous copper(II) sulfate. A white precipitate of copper(I) iodide forms in a brown solution of iodine and potassium sulfate.

(i) Balance the equation and include state symbols.

[2]

The table gives the oxidation numbers of iodine in the different species in the equation.

iodine-containing species	oxidation number of iodine
KI	-1
CuI	-1
I ₂	0

(ii) Deduce the oxidation number of copper in CuSO₄ and CuI.

- oxidation number of copper in CuSO₄
- oxidation number of copper in CuI

[1]

(iii) Describe the type of reaction shown by the equation in (a)(i). Explain your answer in terms of electron transfer.

.....
.....
.....

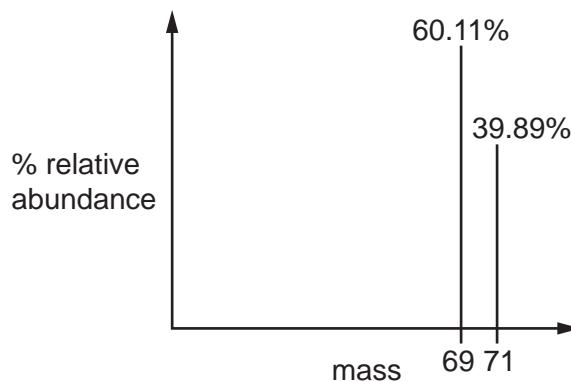
[2]

(b) In the reaction described in (a)(i), a student uses 17.43 g of CuSO₄•yH₂O. By further titration of the reaction products the student concludes that the total amount of CuSO₄ in the sample is 0.0982 mol.

Use the *Data Booklet* to complete the table to calculate the value of y, where y is an integer. Show your working.

mass of 0.0982 mol CuSO ₄ g
amount of H ₂ O in 17.43 g of CuSO ₄ •yH ₂ O mol H ₂ O
value of y	y =

[4]


[Total: 9]

2 - (9701/22_Summer_2020_Q1)

ANSWER

Gallium is an element in Group 13.

A sample of gallium is analysed using a mass spectrometer. The mass spectrum produced is shown.

(a) Explain what is meant by the term *relative atomic mass*.

.....
..... [2]

(b) Calculate the relative atomic mass of gallium in this sample. Give your answer to 4 significant figures.

Show your working.

relative atomic mass = [2]

(c) Complete the table which describes a gaseous atom of gallium.

isotope	nucleon number	total number of electrons in lowest energy level	type of orbital which contains the electron in the highest energy level
^{71}Ga			

[3]

(d) When gallium is heated in excess chlorine, gallium trichloride, GaCl_3 , is made.

Draw the shape of the gallium trichloride molecule and suggest the $\text{Cl}-\text{Ga}-\text{Cl}$ bond angle.

shape of molecule

bond angle

[2]

(e) Gallium oxide, Ga_2O_3 , and aluminium oxide react in the same way with $\text{HCl}(\text{aq})$ and with $\text{NaOH}(\text{aq})$.

(i) Suggest the equation for the reaction between Ga_2O_3 and $\text{HCl}(\text{aq})$.

..... [1]

(ii) Suggest an equation for the reaction between gallium oxide and $\text{NaOH}(\text{aq})$.

..... [2]

[Total: 12]

www.exam-mate.com

3 - (9701/23_Summer_2020_Q2)

(a) Explain what is meant by the term *relative isotopic mass*.

.....
.....
.....

[2]

(b) A sample of copper contains two isotopes, ^{63}Cu and ^{65}Cu . The relative atomic mass of the copper in this sample is 63.55.

Calculate the percentage abundance of each of these isotopes. Show your working.

percentage abundance of ^{63}Cu = %

percentage abundance of ^{65}Cu = %

[2]

(c) (i) Name the type of bonding within a sample of solid copper.

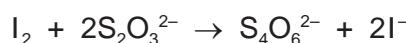
..... [1]

(ii) Draw a labelled diagram to show the bonding within a sample of solid copper.

[2]

(iii) State the electronic configuration of a copper atom.

$1s^2$ [1]


(d) A student is provided with a sample of hydrated copper(II) sulfate, $\text{CuSO}_4 \cdot x\text{H}_2\text{O}$, and is asked to determine the value of x .

The student dissolves a sample of the hydrated copper(II) sulfate in water and adds it to an excess of aqueous potassium iodide to make a total volume of 250.0 cm^3 of solution.

The amount of iodine produced during this reaction is found by titrating a sample of this solution with sodium thiosulfate solution.

25.0 cm^3 of the iodine-containing solution requires 20.0 cm^3 of 0.10 mol dm^{-3} sodium thiosulfate solution.

(i) Calculate the amount, in mol, of copper(II) sulfate present in the original sample of hydrated copper(II) sulfate.

Show your working.

amount of copper(II) sulfate = mol [2]

(ii) A total of 7.98 g of CuSO_4 is present in 10.68 g of $\text{CuSO}_4 \cdot x\text{H}_2\text{O}$.

Complete each row of the table to calculate the value of x , where x is an integer.

[M_r : CuSO_4 , 159.6]

amount of CuSO_4 in 10.68 g of $\text{CuSO}_4 \cdot x\text{H}_2\text{O}$ mol
amount of H_2O in 10.68 g of $\text{CuSO}_4 \cdot x\text{H}_2\text{O}$ mol
value of x	$x =$

[3]

[Total: 13]

4 - (9701/21_Summer_2021_Q1)

ANSWER

Ethanedioic acid, $\text{HO}_2\text{CCO}_2\text{H}$, has a relative molecular mass of 90.0.

(a) (i) Explain what is meant by the term *relative molecular mass*.

.....
.....
..... [2]

(ii) State the empirical formula of ethanedioic acid.

..... [1]

(iii) Calculate how many atoms of carbon are present in 0.18 g of ethanedioic acid, $\text{HO}_2\text{CCO}_2\text{H}$.

Show your working.

atoms of carbon present = [3]

(b) Solid ethanedioic acid reacts with aqueous calcium ions to make a precipitate of calcium ethanedioate, CaC_2O_4 .

CaC_2O_4 breaks down when heated to form calcium oxide, carbon dioxide and carbon monoxide.

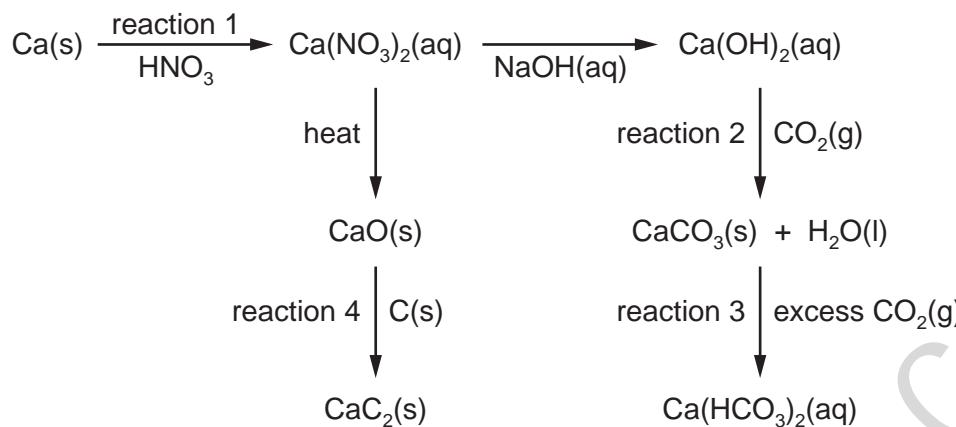
(i) Construct an equation to represent the reaction of CaC_2O_4 when heated. Include state symbols.

..... [2]

(ii) Identify the type of reaction which occurs when CaC_2O_4 is heated.

..... [1]

(iii) Identify another compound containing calcium ions which will also produce carbon dioxide and calcium oxide when it is heated.


..... [1]

[Total: 10]

5 - (9701/21_Winter_2021_Q2)

ANSWER

The reaction scheme shows some reactions of calcium.

(a) (i) Reaction 1 produces $\text{Ca}(\text{NO}_3)_2$ and one other product.

Identify the other product.

..... [1]

(ii) Construct an equation for the thermal decomposition of $\text{Ca}(\text{NO}_3)_2\text{(s)}$.

..... [1]

(iii) State the trend in the thermal stability of the Group 2 nitrates down the group.

..... [1]

(iv) In reaction 3, excess CO_2 is bubbled through water containing CaCO_3 . A solution of $\text{Ca}(\text{HCO}_3)_2\text{(aq)}$ forms.

Construct an equation for reaction 3.

..... [1]

(b) Describe how Ca(OH)_2 is used in agriculture.

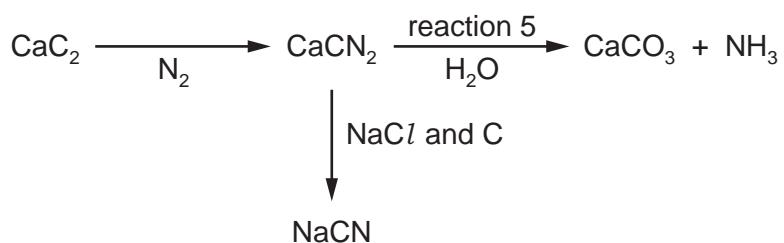
..... [1]

(c) In reaction 4, calcium carbide, CaC_2 , is formed from CaO .

CaC_2 contains the C_2^{2-} anion. Each carbon in C_2^{2-} is sp hybridised.

(i) Describe how sp hybridised orbitals are formed.

.....
.....


[1]

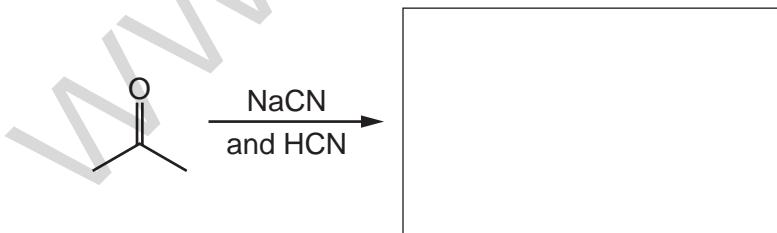
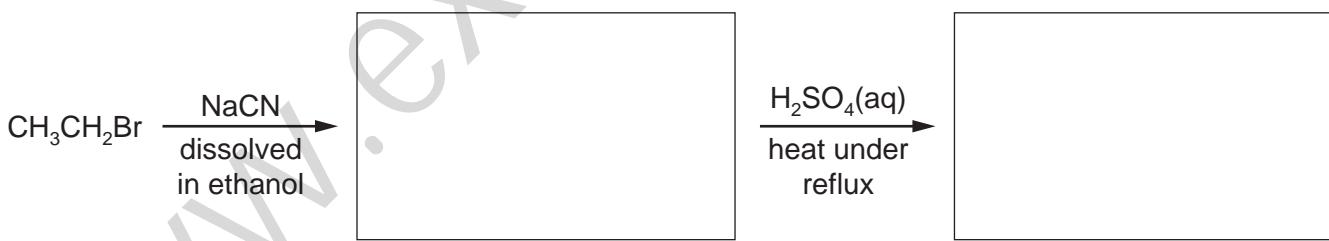
(ii) Sketch a diagram to show how two sp hybrid orbitals can form a sigma (σ) bond.

[2]

www.exam-mate.com

(d) The flowchart shows some reactions of CaC_2 .

(i) Reaction 5 can be used to prepare NH_3 .



Calculate the minimum mass, in tonnes, of calcium cyanamide, CaCN_2 , that is required to produce 1.50×10^6 tonnes of NH_3 .

Show your working.

$$1 \text{ tonne} = 1.00 \times 10^6 \text{ g}$$

minimum mass of CaCN_2 = tonnes
[2]

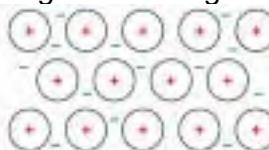
(ii) Draw the structure of the organic products formed in the following reactions.

[3]

[Total: 13]

1 - (9701/21_Summer_2020_Q2)

(a)(i)	$2\text{CuSO}_4(\text{aq}) + 4\text{KI}(\text{aq}) \rightarrow 2\text{CuI}(\text{s}) + (\text{1})\text{I}_2(\text{aq}) + 2\text{K}_2\text{SO}_4(\text{aq})$ M1 correct balancing M2 correct state symbols		
(a)(ii)	Oxidation state of copper in CuSO_4 (+2) AND Oxidation state of copper in CuI (+1)		
(a)(iii)	M1 redox		
	M2 iodide ions – lost electron(s) AND copper ions – gained electron(s)		
(b)	Mass of 0.0982mol CuSO_4 in 17.43g $\text{CuSO}_4 \cdot y\text{H}_2\text{O}$	M1 calculate M_r CuSO_4 using Ar from data booklet $63.5 + 32.1 + 64.0 = 159.6$ M2 use M_r to calculate mass of CuSO_4 $(0.0982 \times M1) = 15.67272\text{g}$	4
	number of water in 17.43g of $\text{CuSO}_4 \cdot y\text{H}_2\text{O}$	M3 calculate the mass amount of water in sample AND use this value to calculate the amount of water present $(17.43 - 15.67)/18 = 0.097778 \text{ mol}$	
	value of y	M4 use the ratio of M2: 0.0982 to find y $(\text{mol H}_2\text{O} \div \text{mol CuSO}_4) = 1$	


2 - (9701/22_Summer_2020_Q1)

(a)	<p>EITHER</p> <p>M1 (weighted) average/mean mass of the isotope(s)/an atom(s)</p> <p>M2 relative to 1/12 of the mass (of an atom) of ^{12}C (where an atom of ^{12}C is exactly 12).</p> <p>OR</p> <p>M1 mass of one mol of atoms</p> <p>M2 relative / compared to 1/12 (the mass) of 1 mol of C-12 OR in which one mol C-12 (atom) has a mass of (exactly) 12 g</p>	2								
(b)	<p>M1 $60.11/100 \times 69 + 39.89/100 \times 71$</p> <p>M2 69.80</p>	2								
(c)	<table border="1" data-bbox="345 660 1693 818"> <thead> <tr> <th data-bbox="345 660 512 755">isotope</th><th data-bbox="512 660 655 755">nucleon number</th><th data-bbox="655 660 1149 755">total number of electrons in lowest energy level</th><th data-bbox="1149 660 1693 755">type of orbital contains the electron in the highest energy level</th></tr> </thead> <tbody> <tr> <td data-bbox="345 755 512 818">^{71}Ga</td><td data-bbox="512 755 655 818">M1 71</td><td data-bbox="655 755 1149 818">M2 2</td><td data-bbox="1149 755 1693 818">M3 p (-orbital)</td></tr> </tbody> </table>	isotope	nucleon number	total number of electrons in lowest energy level	type of orbital contains the electron in the highest energy level	^{71}Ga	M1 71	M2 2	M3 p (-orbital)	3
isotope	nucleon number	total number of electrons in lowest energy level	type of orbital contains the electron in the highest energy level							
^{71}Ga	M1 71	M2 2	M3 p (-orbital)							
(d)	<p>M1 shape</p> <p>$\begin{array}{c} \text{Cl} & & \text{Cl} \\ & \backslash & / \\ & \text{Ga} & \\ & / & \backslash \\ \text{Cl} & & \text{Cl} \end{array}$</p> <p>M2 bond angle 120°</p>	2								
(e)(i)	$\text{Ga}_2\text{O}_3 + 6\text{HCl} \rightarrow 2\text{GaCl}_3 + 3\text{H}_2\text{O}$	1								
(e)(ii)	<p>M1 <i>Identity of correct gallium containing product</i> NaGa(OH)_4 OR NaGaO_2</p> <p>M2 <i>correctly balanced equation for reaction of Ga_2O_3 with NaOH(aq)</i></p> <p>EITHER</p> <p>$\text{Ga}_2\text{O}_3 + 2\text{NaOH} + 3\text{H}_2\text{O} \rightarrow 2\text{NaGa(OH)}_4$</p> <p>OR</p> <p>$\text{Ga}_2\text{O}_3 + 2\text{NaOH} \rightarrow 2\text{NaGaO}_2 + \text{H}_2\text{O}$</p>	2								

3 - (9701/23_Summer_2020_Q2)

(a)	<p>EITHER</p> <p>M1 mass of an atom / isotope</p> <p>M2 relative / compared to 1/12 (the mass) of (an atom of) C-12 OR on a scale in which a C-12 (atom / isotope) has (a mass of exactly) 12 (units)</p> <p>OR</p> <p>M1 mass of one mol (of atoms) of an isotope</p> <p>M2 relative / compared to 1/12 (the mass) of 1 mol of C-12 OR in which one mol C-12 (atom / isotope) has a mass of (exactly) 12 g</p>	2
(b)	<p>% abundance of ^{63}Cu = 72.5% % abundance of ^{65}Cu = 27.5%</p> <p>M1 correct algebraic expression AND correct calculation of x for one isotope % ab of ^{63}Cu = x $(x/100 \times 63) + ((1-x)/100 \times 65) = 63.55$ so $x = 72.5$ OR % ab of ^{65}Cu = x $(1-x)/100 \times 63 + x/100 \times 65 = 63.55$ so $x = 27.5$</p> <p>M2 calculation of abundance of other isotope by 100- x</p>	2
(c)(i)	metallic	1
(c)(ii)	<p><i>diagram showing the bonding in a sample of copper</i></p> <p>M1 diagram shows regular arrangement of spheres labelled as positively charged ions / +2 or +1 / cations M2 diagram shows surrounded by electrons and clearly labelled as 'delocalised electrons'</p>	3
(c)(iii)	$(1s^2) 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^1$ OR $(1s^2) 2s^2 2p^6 3s^2 3p^6 4s^1 3d^{10}$	1

(d)(i)	<p>M1 calculate the number mol $S_2O_3^{2-}$ added $20/1000 \times 0.10 = 2 \times 10^{-3} = 0.002$ (mol $S_2O_3^{2-}$)</p> <p>M2 calculate number mol $CuSO_4$ in $250cm^3$ (1mol $S_2O_3^{2-}$: 1 mol $CuSO_4$) = 0.002 mol $CuSO_4$ in $25cm^3$ so 0.02 mol $CuSO_4$ in $250cm^3$</p>	2						
(d)(ii)	<table border="1" data-bbox="339 463 1275 736"><tr><td data-bbox="339 463 691 552">M1 amount of $CuSO_4$ in 10.68 g of $CuSO_4 \cdot xH_2O$</td><td data-bbox="691 463 1275 552">$7.98 / (159.6) = \underline{0.05}$ (mol)</td></tr><tr><td data-bbox="339 552 691 672">M2 amount of H_2O in 10.68 g of $CuSO_4 \cdot xH_2O$</td><td data-bbox="691 552 1275 672">$(10.68 - 7.98) / 18 = 2.7 / 18 = \underline{0.15}$ (mol)</td></tr><tr><td data-bbox="339 672 691 752">M3 value of x</td><td data-bbox="691 672 1275 752">$(\text{mol } H_2O \div \text{mol } CuSO_4) = 3$</td></tr></table>	M1 amount of $CuSO_4$ in 10.68 g of $CuSO_4 \cdot xH_2O$	$7.98 / (159.6) = \underline{0.05}$ (mol)	M2 amount of H_2O in 10.68 g of $CuSO_4 \cdot xH_2O$	$(10.68 - 7.98) / 18 = 2.7 / 18 = \underline{0.15}$ (mol)	M3 value of x	$(\text{mol } H_2O \div \text{mol } CuSO_4) = 3$	3
M1 amount of $CuSO_4$ in 10.68 g of $CuSO_4 \cdot xH_2O$	$7.98 / (159.6) = \underline{0.05}$ (mol)							
M2 amount of H_2O in 10.68 g of $CuSO_4 \cdot xH_2O$	$(10.68 - 7.98) / 18 = 2.7 / 18 = \underline{0.15}$ (mol)							
M3 value of x	$(\text{mol } H_2O \div \text{mol } CuSO_4) = 3$							

4 - (9701/21_Summer_2021_Q1)

(a)(i)	option 1 M1 the mass of a molecule OR the (weighted) average / (weighted) mean mass of the molecule(s)	1
	option 1 and M2 relative / compared to 1 / 12 (the mass) of an atom of carbon-12	1
	OR on a scale in which a carbon-12 atom / isotope has a mass of (exactly) 12 (units) option 2 M1 mass of one mol of molecules	
(a)(ii)	<chem>CO2H</chem>	1
(a)(iii)	$0.18/90 \times 2 \times 6.02 \times 10^{23} = 2.408 \times 10^{21}$ (atoms) OR $2.4(1) \times 10^{21}$ (atoms) M1 no mole ethanedioic acid $0.18 / 90 = 0.0020$	1
	M2 no mole ethanedioic acid $\times 2$ $0.0020 \times 2 = 0.0040$	1
	M3 no mole ethanedioic acid $\times 6.02 \times 10^{23}$ 2.4×10^{21}	1
(b)(i)	$\text{CaC}_2\text{O}_4(\text{s}) \rightarrow \text{CaO}(\text{s}) + \text{CO}_2(\text{g}) + \text{CO}(\text{g})$ M1 correct formulae	1
	M2 balancing equation AND state symbols.	1
(b)(ii)	(thermal) decomposition OR disproportionation	1
(b)(iii)	calcium carbonate / <chem>CaCO3</chem>	1